metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23.7D6, C23⋊2Dic3, (C2×C4)⋊Dic3, (C2×C12)⋊1C4, (C2×C6).2D4, C3⋊2(C23⋊C4), (C22×C6)⋊2C4, (C6×D4).6C2, (C2×D4).3S3, C6.D4⋊2C2, C6.15(C22⋊C4), C22.2(C3⋊D4), (C22×C6).6C22, C22.3(C2×Dic3), C2.5(C6.D4), (C2×C6).29(C2×C4), SmallGroup(96,41)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23.7D6
G = < a,b,c,d,e | a2=b2=c2=d6=1, e2=ba=ab, dad-1=eae-1=ac=ca, ebe-1=bc=cb, bd=db, cd=dc, ce=ec, ede-1=bcd-1 >
Character table of C23.7D6
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 12A | 12B | |
size | 1 | 1 | 2 | 2 | 2 | 4 | 2 | 4 | 12 | 12 | 12 | 12 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | i | i | -i | -i | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -i | i | i | -i | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | i | -i | -i | i | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -i | -i | i | i | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ9 | 2 | 2 | -2 | -2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | 2 | 2 | 2 | -2 | -1 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | 2 | -2 | 2 | -1 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ14 | 2 | 2 | -2 | 2 | -2 | -2 | -1 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | symplectic lifted from Dic3, Schur index 2 |
ρ15 | 2 | 2 | -2 | -2 | 2 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | √-3 | -√-3 | -1 | 1 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ16 | 2 | 2 | 2 | -2 | -2 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -√-3 | √-3 | 1 | -1 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ17 | 2 | 2 | 2 | -2 | -2 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | √-3 | -√-3 | 1 | -1 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ18 | 2 | 2 | -2 | -2 | 2 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -√-3 | √-3 | -1 | 1 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ19 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -2√-3 | 2 | 2√-3 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2√-3 | 2 | -2√-3 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(2 13)(4 15)(6 17)(8 21)(10 23)(12 19)
(7 20)(8 21)(9 22)(10 23)(11 24)(12 19)
(1 18)(2 13)(3 14)(4 15)(5 16)(6 17)(7 20)(8 21)(9 22)(10 23)(11 24)(12 19)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 19)(2 11 13 24)(3 23)(4 9 15 22)(5 21)(6 7 17 20)(8 16)(10 14)(12 18)
G:=sub<Sym(24)| (2,13)(4,15)(6,17)(8,21)(10,23)(12,19), (7,20)(8,21)(9,22)(10,23)(11,24)(12,19), (1,18)(2,13)(3,14)(4,15)(5,16)(6,17)(7,20)(8,21)(9,22)(10,23)(11,24)(12,19), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,19)(2,11,13,24)(3,23)(4,9,15,22)(5,21)(6,7,17,20)(8,16)(10,14)(12,18)>;
G:=Group( (2,13)(4,15)(6,17)(8,21)(10,23)(12,19), (7,20)(8,21)(9,22)(10,23)(11,24)(12,19), (1,18)(2,13)(3,14)(4,15)(5,16)(6,17)(7,20)(8,21)(9,22)(10,23)(11,24)(12,19), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,19)(2,11,13,24)(3,23)(4,9,15,22)(5,21)(6,7,17,20)(8,16)(10,14)(12,18) );
G=PermutationGroup([[(2,13),(4,15),(6,17),(8,21),(10,23),(12,19)], [(7,20),(8,21),(9,22),(10,23),(11,24),(12,19)], [(1,18),(2,13),(3,14),(4,15),(5,16),(6,17),(7,20),(8,21),(9,22),(10,23),(11,24),(12,19)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,19),(2,11,13,24),(3,23),(4,9,15,22),(5,21),(6,7,17,20),(8,16),(10,14),(12,18)]])
G:=TransitiveGroup(24,96);
(1 21)(2 19)(3 23)(4 15)(5 13)(6 17)(7 24)(8 22)(9 20)(10 14)(11 18)(12 16)
(1 7)(2 8)(3 9)(19 22)(20 23)(21 24)
(1 7)(2 8)(3 9)(4 11)(5 12)(6 10)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 12 24 16)(2 11 22 18)(3 10 20 14)(4 19 15 8)(5 21 13 7)(6 23 17 9)
G:=sub<Sym(24)| (1,21)(2,19)(3,23)(4,15)(5,13)(6,17)(7,24)(8,22)(9,20)(10,14)(11,18)(12,16), (1,7)(2,8)(3,9)(19,22)(20,23)(21,24), (1,7)(2,8)(3,9)(4,11)(5,12)(6,10)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,12,24,16)(2,11,22,18)(3,10,20,14)(4,19,15,8)(5,21,13,7)(6,23,17,9)>;
G:=Group( (1,21)(2,19)(3,23)(4,15)(5,13)(6,17)(7,24)(8,22)(9,20)(10,14)(11,18)(12,16), (1,7)(2,8)(3,9)(19,22)(20,23)(21,24), (1,7)(2,8)(3,9)(4,11)(5,12)(6,10)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,12,24,16)(2,11,22,18)(3,10,20,14)(4,19,15,8)(5,21,13,7)(6,23,17,9) );
G=PermutationGroup([[(1,21),(2,19),(3,23),(4,15),(5,13),(6,17),(7,24),(8,22),(9,20),(10,14),(11,18),(12,16)], [(1,7),(2,8),(3,9),(19,22),(20,23),(21,24)], [(1,7),(2,8),(3,9),(4,11),(5,12),(6,10),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,12,24,16),(2,11,22,18),(3,10,20,14),(4,19,15,8),(5,21,13,7),(6,23,17,9)]])
G:=TransitiveGroup(24,98);
(2 20)(4 22)(6 24)(8 16)(10 18)(12 14)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 23)(14 24)(15 19)(16 20)(17 21)(18 22)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 15)(8 16)(9 17)(10 18)(11 13)(12 14)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 6 7 14)(2 11 16 5)(3 4 9 18)(8 23 20 13)(10 21 22 17)(12 19 24 15)
G:=sub<Sym(24)| (2,20)(4,22)(6,24)(8,16)(10,18)(12,14), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,23)(14,24)(15,19)(16,20)(17,21)(18,22), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,15)(8,16)(9,17)(10,18)(11,13)(12,14), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,6,7,14)(2,11,16,5)(3,4,9,18)(8,23,20,13)(10,21,22,17)(12,19,24,15)>;
G:=Group( (2,20)(4,22)(6,24)(8,16)(10,18)(12,14), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,23)(14,24)(15,19)(16,20)(17,21)(18,22), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,15)(8,16)(9,17)(10,18)(11,13)(12,14), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,6,7,14)(2,11,16,5)(3,4,9,18)(8,23,20,13)(10,21,22,17)(12,19,24,15) );
G=PermutationGroup([[(2,20),(4,22),(6,24),(8,16),(10,18),(12,14)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,23),(14,24),(15,19),(16,20),(17,21),(18,22)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,15),(8,16),(9,17),(10,18),(11,13),(12,14)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,6,7,14),(2,11,16,5),(3,4,9,18),(8,23,20,13),(10,21,22,17),(12,19,24,15)]])
G:=TransitiveGroup(24,111);
C23.7D6 is a maximal subgroup of
C23.D12 C23.2D12 C23.3D12 C23.4D12 C24⋊5Dic3 (C22×C12)⋊C4 C42⋊4Dic3 C42⋊5Dic3 C23⋊C4⋊5S3 S3×C23⋊C4 C24⋊6D6 C22⋊C4⋊D6 (C6×D4)⋊10C4 2+ 1+4.5S3 2+ 1+4⋊7S3 C23⋊2Dic9 C62.31D4 C62.38D4 (C2×C6).D20 C23.7D30 (C2×C60)⋊C4 C3⋊(C23⋊F5)
C23.7D6 is a maximal quotient of
C24.3Dic3 C24.12D6 (C2×C12)⋊C8 C24⋊5Dic3 (C6×D4)⋊C4 (C6×Q8)⋊C4 (C22×C12)⋊C4 C42⋊4Dic3 C42.Dic3 C42⋊5Dic3 C42.3Dic3 C23⋊2Dic9 C62.31D4 C62.38D4 (C2×C6).D20 C23.7D30 (C2×C60)⋊C4 C3⋊(C23⋊F5)
Matrix representation of C23.7D6 ►in GL4(𝔽7) generated by
2 | 6 | 0 | 4 |
2 | 6 | 4 | 1 |
0 | 0 | 6 | 0 |
5 | 2 | 1 | 0 |
0 | 6 | 3 | 2 |
6 | 0 | 4 | 2 |
0 | 0 | 6 | 0 |
0 | 0 | 0 | 1 |
6 | 0 | 0 | 0 |
0 | 6 | 0 | 0 |
0 | 0 | 6 | 0 |
0 | 0 | 0 | 6 |
3 | 5 | 4 | 1 |
6 | 4 | 4 | 6 |
5 | 5 | 5 | 4 |
0 | 0 | 0 | 2 |
2 | 1 | 4 | 1 |
3 | 3 | 0 | 0 |
1 | 6 | 3 | 3 |
4 | 4 | 3 | 6 |
G:=sub<GL(4,GF(7))| [2,2,0,5,6,6,0,2,0,4,6,1,4,1,0,0],[0,6,0,0,6,0,0,0,3,4,6,0,2,2,0,1],[6,0,0,0,0,6,0,0,0,0,6,0,0,0,0,6],[3,6,5,0,5,4,5,0,4,4,5,0,1,6,4,2],[2,3,1,4,1,3,6,4,4,0,3,3,1,0,3,6] >;
C23.7D6 in GAP, Magma, Sage, TeX
C_2^3._7D_6
% in TeX
G:=Group("C2^3.7D6");
// GroupNames label
G:=SmallGroup(96,41);
// by ID
G=gap.SmallGroup(96,41);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,24,121,188,579,2309]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^6=1,e^2=b*a=a*b,d*a*d^-1=e*a*e^-1=a*c=c*a,e*b*e^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*c*d^-1>;
// generators/relations
Export
Subgroup lattice of C23.7D6 in TeX
Character table of C23.7D6 in TeX